Work on an extensive petroleum engineering project covering many areas.

Prerequisite:

OG 498 and coverage of all courses up to 1st semester of the 4th year


Objectives

To  impart  to  students  requisite  thermodynamics  knowledge  and  its  applications  in  the

petroleum industry; To learn among others, behaviour of fluids, solution thermodynamics, phase and, or chemical reaction equilibrium.

Learning Outcome

At the end of the course students will be able to:

Apply thermodynamic equations to ideal and non-ideal systems

Apply petroleum engineering thermodynamics to the real oil and gas industry.

 

Prerequisites

CP 203

Mode of Delivery

3 hour lecture + 1 hour tutorial/practical per week (60 Hours)

Course Assessment

The course will be assessed through:

Continuous Assessment (tests, quizzes and/or homeworks)                                              : 40% University Examination                                                                                                       : 60%

Course contents

Thermodynamic  properties  of  fluid  mixtures;  Equations  of  state  for  ideal  and  non-ideal

systems; Partial molar properties, chemical potential, fugacity and fugacity coefficients for pure  species  and  species  in  solution,  residual  properties;  Properties  of  mixtures  –  ideal mixtures,  excess  properties,  Gibbs  Duhem  relation,  excess  Gibbs  free  energy  models; Henry’s law.

Phase  transition  in pure  substance,  vapour  pressure  of  pure  substance;  Gibbs  phase  rule, Qualitative behaviour of Vapour-liquid equilibrium in binary and multi-component  system, ideal model for VLE, bubble point and dew point calculations.

Reaction  coordinate,  criteria  for phase and, or chemical  reaction  equilibrium,  equilibrium constant, effect of temperature on equilibrium constant, equilibrium of homogeneous gas and liquid phase reactions; Gibbs free energy application

Recommended Text Books

1. Prausnitz,   J.   M.,   Lichtenthaler   and   de-Azevedo    E.   G.,   (2010):   Molecular

Thermodynamics of Fluid Phase Equilibria, 3rd Edtn.2, Prentice Hall Intern. Series.

2. Sandler, S.I., (2006): Chemical, Biochemical and Engineering Thermodynamics,  4th

Edition, Wiley and Sons.

3. Rao  Y.V.C.,  (2005):  Chemical  Engineering   Thermodynamics,   University  Press, Hyderabad,

Recommended References

1. Tester, J. W. and M. Modell, (1997): Thermodynamics and Its Applications, 3rd Edn.

Prentice Hall, New Jersey.

2. Reid,  R.C,  Prausnitz,  J.M  and  Poling,  B.E.,  (1988):  The  Properties  of  Gases  and

Liquids, Fourth Edition, McGraw-Hill Int. Edition

Objectives

The course will impart knowledge to students on numerical skills and techniques for solving

non-linear problems commonly encountered in the petroleum industry; and an appreciation of numerical influence for obtaining solution of petroleum problems.

Learning Outcome

Upon completion of this course, the student will be able to:

Perform error analysis as it applies to oil and gas industry

Use numerical methods and techniques to solve real petroleum situations. Apply numerical methods to estimate resources

Prerequisites

MT 161, MT 171 MT 261

Mode of Delivery

3 hours lecture and 1 hours of tutorial

Course Assessment

Continuous Assessment (tests, quizzes and/or homeworks)                                              : 40% University Examination                                                                                                       : 60%

Course content

Approximation and Errors: Accuracy, truncation, Taylor series and bracketing methods

Linear Equations: Gauss elimination, complex system and LU decomposition etc. Non-Linear Equations: Bisection method, iteration, secant method, Newton-Raphson method, System of Nonlinear  Equations  and  Convergence   etc.  Numerical  Differentiation   and  Integration: Accuracy of derivatives,  Newton-Cotes  Integration  Formulae,  Integration  for multiple and improper integrals. Interpolation and Curve Fitting Methods: Binary Search, approximation, Larange  polynomials,  Inverse  type,  Least  Squares  and Orthogonal  Polynomials  including rational and spline function.

Lab Practice

Various software Programmes and related to the petroleum industry.

Recommended Text Books

1.   Gerald, C. F. (2003): Applied Numerical analysis, ISBN: 0321133048.

2.   Chapra,  S. C. and Canale,  R. P. (2000):  Numerical  methods for engineers,  ISBN:

0073401064

Recommended References

1. Chapra S. C., (1999): Applied numerical methods with MATLAB  for engineers and

scientists, ISBN: 007313290X


Objective

To introduce students to geostatistical principles as applied in Petroleum Engineering.  The

course will allow students to have thorough knowledge of the steps involved in proving a reservoir; to understand the typical geostatistical problems and their solutions; to understand the meaning of regionalized variables (spatial distribution of samples) and random functions;

and to be able to interpret the concept of in situ resources and recoverable resources.

Learning outcomes

Upon completion of this course, the student will be able to:

(a)  Generate variogram models using samples collected from the field

(b)  Identify the continuity of the mineralization for given set of samples and geological data

(c)  Create resource block models from exploration dataset

(d)  Carry out point and block estimation of grade using kriging method.

Pre-requisites: MT 271, MT 161, MN 102, GY 100

Mode of Delivery

3 hrs lecture+ 1 hr tutorial per week (60 Hours)

Mode of assessment

The course will be assessed on continuous assessment only which will be composed of the following breakdowns

Continuous Assessment (tests, quizzes and/or homeworks)                                              : 40% University Examination                                                                                                       : 60%

Course Contents

Geostatistics and mining application:

General introduction of the steps involved in proving a deposit; traditional interpolation methods;  geostatistical  language;  some typical problems  and their geostatistical  approach. This is followed  by a Theory  of regionalized  variables,  in which  topics  on regionalized variables and random functions; estimation variance; dispersion variance; covariance, regularization; calculation of the mean values are covered.

Structural Analysis

Nested structures and the nugget effect models of variogram are covered followed by the practice of structural analysis.

Ordinary and simple krigging methods of mineral resource estimation

The  topic  will  involve  coverage  of  the  theory  and  application  of  Ordinary  and  simple

Krigging;  point and block krigging of the in situ resources  and recoverable  reserves; and permanence of distribution.

Recommended Textbooks

1.   Isobel, C., Harper, W.V., (2000): Practical Geostatistics, Geostokos Ecosse Ltd. Scotland.

2.   David, M., (1977): Geostatistical Ore Reserve Estimation, Elservier Scientific Publishing

Co.

3.   Rendu, M., (1981): Introduction to Geostatistical Methods of Mineral Evaluation, 2nd Ed., Soth African Institute of Mining and Metallurgy.

Recommended References

1.   Alastair,  J.  S  and  Garston,   H.  B.  (2006)  Applied  Mineral  Inventory  Estimation.

Cambridge: University Press.

2.   Edward, H. I. and Mohan S. R., (1998): An Introduction to Applied Geostatistics.

Objectives

To impart advanced knowledge to the students on wellbore hydraulics, cementing of wells

and the general techniques of well drilling, completion, stimulation and testing.

Learning Outcomes

At the end of the course students will be able to:

Apply drilling hydraulics principles

Use pore pressure formation to control production and estimate fracture pressure

Apply casing design in cementing of wells

Prerequisites

OG 321: Drilling I

Mode of Delivery

3 hour lecture + 1 hour tutorial/practical per week (60 Hours)

Course Assessment

The course will be assessed through:

Continuous Assessment (tests, quizzes and/or homeworks)                                              : 40% University Examination                                                                                                       : 60%

Course Contents

Wellbore  hydraulics.  Pressure  control  and  blowout  prevention;  control  of  pressure.  BOP

valves;  stack  choke  line  and  choke  manifold;  choice  of  BOP  system.  Control  of  kick; subsurface   pressures   and  mud  hydrostatic   pressure;   data  for  executing   kick  control; indications  of kicks; methods for circulating out a kick - Balanced Bottom Hole Pressure (BBHP)   method,   driller's   method;   kicking   when   tripping,   gas  cut  mud.   Cementing: Equipment, hole conditions; calculations and rate of circulation, squeeze cementing, cement plug.  Fishing;  fishing  tools,  objects  cost  in  the  hole,  fishing  methods.  Casing  design: mechanical properties - tension, collapse and burst; designing a casing string. General details of well drilling, completion, stimulation and testing


Recommended Textbooks

1.   Lake,  L.  (2006):  Petroleum  Engineering  Handbook:  Drilling  Engineering  Vol.  II,

Society of Petroleum Engineers, Texas, USA.

2.   Bourgoyne,  A.T.,  Millheim,  K.K.,  Chenevert,  M.E.,  Young,  F.S.  (1991):  Applied

Drilling Engineering, Society of Petroleum Engineers, Texas, USA.

 

Recommended References

1.   Mitchell,  R.F.,  Lake,  L.W.  (2007):  Petroleum  Engineering   Handbook:   Drilling

Engineering Vol.2, Society of Petroleum Engineers, Texas, USA

2.   Lapeyrouse,  N.J.  (2002):  Formulas  and  Calculation  for  Drilling,  Productionand

Workover, Elsevier Science, ISBN 0750674520 ASIN: B001MT21K0

Objectives

The course will introduce students to the uses of specific software applications  tailored toward

petroleum engineering. Basic methods for obtaining numerical solutions with a digital computer, including  methods  for  the  solutions  of  algebraic  and  transcendental  equations,  simultaneous linear equations, ordinary and partial differential equations, and curve fitting techniques will also be  covered.  The  methods  will  be  compared  with  respect  to  computational   efficiency  and accuracy.

Learning Outcomes

After the course Students will be able to:

Apply modelling techniques to reservoir design

Apply mathematical equations for single-phase flow in porous media

Apply linear differential equations to the reservoir using direct and iterative methods.

Use appropriate Software (like Eclipse, Merak Peep, ARIES™ System Petroleum

Economic Evaluation Software).

Prerequisites

None

Mode of Delivery

Three (3) hours of lectures per week + one (1) hour tutorial per week.

Course Assessments

Continuous Assessment (tests, quizzes and/or homeworks)                                              : 40% University Examination                                                                                                       : 60%

Contents

Introduction to the concepts of reservoir simulation, its advantages and limitations. Revision of basic reservoir engineering concepts, reservoir fluid and rock properties and basic mathematical  concepts.  Formulation  of  basic  equations  for  single-phase  flow  in  porous media, finite difference approximation to flow equations, stability and error analysis. Well representation  in  simulators,  solution  of  linear  differential  equations  applicable  to  the reservoir using direct and iterative methods. Software Applications: Use of a simulator (like Eclipse, Merak Peep, ARIES™ System Petroleum Economic Evaluation Software, etc.

 

 

Recommended Textbooks

1.   Grewal,  B.S.  and  Grewal,  J.S.,(2004):  Numerical  methods  in  Engineering  and

Science, 6th Edition, Khanna Publishers, New Delhi,

2.   Sankara, R. K. (2007): Numerical methods for Scientists and Engineers, 3rd Edition

Prentice Hall of India Private Ltd., New Delhi,

3.   Turgay,  E.,   Abou-Kassem,J.   H.,  King,  G.R.,   (2001):   Basic  Applied  Reservoir

Simulation, the Society of Petroleum Engineers Inc, Richardson, Texas

4.   Peaceman, D. W., (1977): Fundamentals of Numerical Reservoir Simulation, Elsevier

Scientific Publishing Company, Amsterdam, The Netherlands

5.   Chapra, S. C. and Canale, R. P. (2007): Numerical Methods for Engineers 5th Edition, Tata McGraw-Hill, New Delhi.

Recommended Reference

1.   Fanchi, J. R., (2006): Principles of Applied Reservoir Simulation, Third edition, Gulf

Professional Publishing, Oxford, UK

2.   Gerald, C. F. and Wheatley, P. O., (2006): Applied Numerical Analysis”, 6th Edition, Pearson Education Asia, New Delhi

3.   Bradie, B., (2007): A friendly introduction to Numerical analysis, Pearson Education

Asia, New Delhi.